wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=13cscx+cotx, find dydx

Open in App
Solution

We have,
y=13cscx+cotx

y=1(cscx+cotx)13

y=(cscx+cotx)13

On differentiating w.r.t x, we get
dydx=ddx(cscx+cotx)13

dydx=13(cscx+cotx)43ddx(cscx+cotx)

dydx=13(cscx+cotx)43(cscxcotxcsc2x)

dydx=cscx3(cscx+cotx)43(cotx+cscx)

dydx=cscx3(cscx+cotx)13

dydx=cscx3(cscx+cotx)13

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon