Byju's Answer
Standard XII
Mathematics
Integrating Factor
If y is a f...
Question
If
y
is a function of
x
, then
d
2
y
d
x
2
+
y
d
y
d
x
=
0.
If
x
is a function of
y
, then the equation becomes
A
d
2
x
d
y
2
+
x
d
x
d
y
=
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
d
2
x
d
y
2
+
y
(
d
x
d
y
)
3
=
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
d
2
x
d
y
2
−
y
(
d
x
d
y
)
2
=
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
d
2
x
d
y
2
−
x
(
d
x
d
y
)
2
=
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
d
2
x
d
y
2
−
y
(
d
x
d
y
)
2
=
0
Given
d
2
y
d
x
2
+
y
d
y
d
x
=
0
......(1)
Now
d
y
d
x
=
1
d
x
d
y
∴
d
2
y
d
x
2
=
d
d
x
⎛
⎜ ⎜ ⎜ ⎜
⎝
1
d
x
d
y
⎞
⎟ ⎟ ⎟ ⎟
⎠
=
d
d
y
⎛
⎜ ⎜ ⎜ ⎜
⎝
1
d
x
d
y
⎞
⎟ ⎟ ⎟ ⎟
⎠
d
y
d
x
=
−
1
(
d
x
d
y
)
2
d
2
x
d
y
2
.
1
d
x
d
y
⇒
d
2
y
d
x
2
=
−
d
2
x
d
y
2
(
d
x
d
y
)
3
(substitute in (1)), we get
−
d
2
x
d
y
2
(
d
x
d
y
)
3
+
y
d
y
d
x
=
0
⇒
y
(
d
x
d
y
)
2
−
d
2
x
d
y
2
=
0
Suggest Corrections
0
Similar questions
Q.
d
2
x
d
y
2
=
−
d
2
y
d
x
2
.
(
d
x
d
y
)
3
Q.
If
y
=
f
(
x
)
is a differentiable function of
x
, then show that
d
2
x
d
y
2
=
−
(
d
y
d
x
)
−
3
.
d
2
y
d
x
2
Q.
y=f(x)
be a real valued twice differentiable function defined on R, then
d
2
y
d
x
2
(
d
x
d
y
)
3
+
d
2
x
d
y
2
=
Q.
If
y
=
f
(
x
)
is a differentiable function, then show that
d
2
x
d
y
2
=
−
(
d
y
d
x
)
−
3
d
2
y
d
x
2
Q.
If
y
=
x
+
e
x
then
d
2
x
d
y
2
is:
View More
Related Videos
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Explore more
Integrating Factor
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app