Byju's Answer
Standard XII
Mathematics
Chain Rule of Differentiation
If y = log ...
Question
If
y
=
l
o
g
√
1
+
tan
x
1
−
tan
x
, prove that
d
y
d
x
=
sec
2
x
.
Open in App
Solution
Now,
y
=
log
√
1
+
tan
x
1
−
tan
x
or,
y
=
1
2
log
(
1
+
tan
x
)
(
1
−
tan
x
)
or,
y
=
1
2
(
log
(
1
+
tan
x
)
−
log
(
1
−
tan
x
)
)
Now differentiating both sides with respect to
x
we get,
d
y
d
x
=
1
2
(
sec
2
x
1
+
tan
x
−
−
sec
2
x
1
−
tan
x
)
or,
d
y
d
x
=
1
2
(
sec
2
x
1
+
tan
x
+
sec
2
x
1
−
tan
x
)
or,
d
y
d
x
=
1
2
(
2
sec
2
x
1
−
tan
2
x
)
or,
d
y
d
x
=
(
1
+
tan
2
x
1
−
tan
2
x
)
or,
d
y
d
x
=
1
cos
2
x
or,
d
y
d
x
=
sec
2
x
.
Suggest Corrections
1
Similar questions
Q.
If
y
=
{
1
−
t
a
n
x
1
+
t
a
n
x
}
,
s
h
o
w
t
h
a
t
d
y
d
x
=
−
2
(
1
+
s
i
n
2
x
)
Q.
If
y
=
√
1
+
tan
x
1
−
tan
x
then
d
y
d
x
is equal to-
Q.
If
y
=
√
tan
x
+
√
tan
x
+
√
tan
x
+
.
.
.
.
.
∞
then
d
y
d
x
=
Q.
If
y
=
tan
x
+
tan
x
+
tan
x
+
.
.
to
∞
, prove that
d
y
d
x
=
sec
2
x
2
y
-
1
Q.
If
y
=
tan
−
1
(
s
e
c
x
+
t
a
n
x
)
then
d
y
d
x
=
View More
Related Videos
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Explore more
Chain Rule of Differentiation
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app