If y=sin(sinx), prove that d2ydx2+tanxdydx+ycos2x=0.
We have y=sin(sinx) ⇒dydx=cos(sinx)cosx.....(i)
And, d2ydx2=−cos(sinx)sinx−sin(sinx)cos2x
⇒d2ydx2=−cos(sinx)×sin xcos x×cos x−ycos2 x
⇒d2ydx2=−tanx ×dydx−ycos2 x (By (i) )
Hence, d2ydx2+tanxdydx+ycos2x=0