Byju's Answer
Standard XII
Mathematics
Complex Numbers
If z=-1, th...
Question
If
z
=
−
1
, then the principal value of the arg
(
z
2
/
3
)
is equal to-
A
π
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
π
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
π
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
2
π
3
Given,
z
=
−
1
Thus
z
=
c
o
s
θ
+
i
s
i
n
θ
and
R
e
(
z
)
=
−
1
therefore
c
o
s
θ
=
−
1
∴
θ
=
π
∴
z
=
c
o
s
π
+
i
s
i
n
π
∴
(
z
2
3
)
=
(
c
o
s
π
+
i
s
i
n
π
)
2
3
Using De Moivre's Theorem:
∴
(
z
2
3
)
=
(
c
o
s
2
π
3
+
i
s
i
n
2
π
3
)
=
a
r
g
(
z
2
3
)
=
2
π
3
Suggest Corrections
0
Similar questions
Q.
The values of
′
a
′
and
′
b
′
so that the function
f
(
x
)
=
⎧
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩
x
+
a
√
2
sin
x
,
0
≤
x
<
π
4
2
x
cot
x
+
b
,
π
4
≤
x
≤
π
2
a
cos
2
x
−
b
sin
x
,
π
2
<
x
≤
π
is continuous at
x
=
π
4
,
π
2
are
Q.
If
z
=
−
1
, then principal value of the
arg
(
z
2
/
3
)
is/are
Q.
If
z
=
−
1
, then principal value of the
arg
(
z
2
/
3
)
is/are
Q.
Match the equation in
z
in
C
o
l
u
m
n
−
I
with the corresponding value of
a
r
g
(
z
)
in
c
o
l
u
m
n
−
I
I
.
C
o
l
u
m
n
−
I
(equation in z)
C
o
l
u
m
n
−
I
I
(principal value of arg(z))
z
2
−
z
+
1
=
0
−
2
π
/
3
z
2
+
z
+
1
=
0
−
π
/
3
2
z
2
+
1
+
i
√
3
=
0
π
/
3
2
z
2
+
1
−
i
√
3
=
0
2
π
/
3
Q.
Assertion :If
z
=
√
3
+
4
i
+
√
−
3
+
4
i
, then principal arg of z i.e. arg (z) are
±
π
4
,
±
3
π
4
where
√
−
1
=
i
. Reason: If z = A + iB, then
√
z
=
⎧
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩
√
|
z
|
+
R
e
(
z
)
2
+
i
√
|
z
|
−
R
e
(
z
)
2
,
if
B
>
0
⎷
|
z
|
+
R
e
(
z
)
2
−
i
√
|
z
|
−
R
e
(
z
)
2
,
if
B
<
0
View More
Related Videos
Introduction
MATHEMATICS
Watch in App
Explore more
Complex Numbers
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app