wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a ΔABC,IfAC>AB and the bisector of A meets BC at E, then

A
CE>BE
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
CE<BE
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
CD>BE
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
CD<BE
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A CE>BE
GivenABC,AC>AB.ThebisectorofAmeetsBCatE.Construction:TakeapointFonAC,suchthatAF=AB.JoinBFandEF.LetBFintersectAEatO.ABFisanisoscelestriangle(SinceAB=AF,byconstruction)AEbisectsA(given)AEistheperpendicularbisectorofBF,soanypointonAEisequidistantfromBandF.Inparticular,BE=FESo,inBEF,EBF=EFB=α,(anglesoppositeequalsides)So,BEO=90=FEO(Letangle=γ)ThusAEalsobisectsBEF.Now,becauseinatriangle,exteriorangleisthesumofinterioroppositeangles,soEFC=θ+γandexB=θ+γSo,EFC=extB.ButB=2θ+C,soEFC=2θ+C.EFC>CSo,CE>FECE>BE(SinceBE+FE)
330076_327691_ans.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Inequalities in Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon