The correct option is
D 2(R+r)
1) We know that
a2sinA=b2sinB=c2sinC=R
where, A,B,C are interior angles of △ABC and a,b,c are sides of △ABC
R = circumradius of triangle
∴asinA=bsinB=csinC=2R
Given, a.cotA+b.cotB+c.cotC
=acosAsinA+bcosBsinB+ccosCsinC
=2RcosA+2RcosB+2RcosC from (1)
=2R(cosA+cosB+cosC)
We know that, cosA+cosB=2cos(A+B2)cos(A−B2)
Thus, given expression becomes,
2R[2cos(A+B2)cos(A−B2)+cosC]
=2R[2cos(π−C2)cos(A−B2)+(1−2sin2C2)]
(∵A+B+C=π)
2R[2cos(π2−C2)cos(A−B2)+(1−2sin2C2)]
2R[2sin(C2)cos(A−B2)+1−2sin2C2]
=2R[1+2sin(C2)(cos(A−B2)−sin(C2))]
=2R[1+2sin(C2)(cos(A−B2)−sin(π−(A+B)2))]
=2R[1+2sin(C2)(cos(A−B2)−sin(π2−A+B2))]
=2R[1+2sin(C2)(cos(A−B2)−cos(A+B2))]
=2R[1+2sin(C2)(cos(A2−B2)−cos(A2+B2))]
We know that, cosA−cosB=2sin(A+B2)sin(B−A2)
Thus, given expression becomes,
=2R[1+2sin(C2)(2sin[A2−B2+A2+B22]sin[A2+B2−(A2−B2)2])]
=2R[1+2sin(C2)(2sinA2sinB2)]
=2R[1+4sinA2sinB2sinC2]
But, 4sinA2sinB2sinC2=rR
=2R[1+rR]
=2R[R+rR]
=2[R+r]