In a parallelogram ABCD, diagonals AC and BD intersect at O.
If ∠DAC=41∘ and ∠AOB=70∘. Then ∠DBC=
29∘
∠AOB=∠DOC (vertically opposite angles)
∠AOD=∠BOC (vertically opposite angles)
∠AOB+∠DOC+∠AOD+∠BOC=360∘
∠AOD=110∘
∠OAD+∠AOD+∠ADO=180∘ (sum of angles in a triangle is 180∘)
∠ADO=29∘
∠ADO=∠DBC (alternate interior angles)
∠DBC=29∘