Byju's Answer
Standard XII
Mathematics
Integration by Substitution
In any Δ ...
Question
In any
Δ
A
B
C
, if
cos
θ
=
a
b
+
c
,
cos
ϕ
=
b
a
+
c
,
cos
Ψ
=
c
a
+
b
, where
θ
,
ϕ
and
Ψ
lie between
0
and
π
, prove that
tan
2
θ
2
+
tan
2
ϕ
2
+
tan
2
Ψ
2
=
1
Open in App
Solution
Given,
cos
θ
=
a
b
+
c
⇒
1
−
tan
2
θ
/
2
1
+
tan
2
θ
/
2
=
a
b
+
c
⇒
tan
2
θ
2
=
b
+
c
−
a
a
+
b
+
c
(i)
Similarly
tan
2
ϕ
2
=
a
+
c
−
b
a
+
b
+
c
(ii)
and
tan
2
Ψ
2
=
a
+
b
−
c
a
+
b
+
c
(iii)
adding (i), (ii) and (iii), we get
tan
2
θ
2
+
tan
2
ϕ
2
+
tan
2
Ψ
2
=
a
+
b
+
c
a
+
b
+
c
⇒
tan
2
θ
2
+
tan
2
ϕ
2
+
tan
2
Ψ
2
=
1
Suggest Corrections
1
Similar questions
Q.
If
A
B
=
O
where
A
=
[
cos
2
θ
cos
θ
sin
θ
cos
θ
sin
θ
sin
2
θ
]
and
B
=
[
cos
2
ϕ
cos
ϕ
sin
ϕ
cos
ϕ
sin
ϕ
sin
2
ϕ
]
then
|
θ
−
ϕ
|
is equal to
Q.
In a triangle
A
B
C
,
the least value of
tan
2
A
2
+
tan
2
B
2
+
tan
2
C
2
is
Q.
If
3
cot
θ
=
4
, show that
1
-
tan
2
θ
1
+
tan
2
θ
=
cos
2
θ
-
sin
2
θ
.
Q.
Prove that
1
+
cos
(
A
−
B
)
cos
C
1
+
cos
(
A
−
C
)
cos
B
=
a
2
+
b
2
a
2
+
c
2
Q.
Let
^
a
,
^
b
,
^
c
are three unit vectors such that
^
a
+
^
b
+
^
c
is also a unit vector. If pairwise angles between
^
a
,
^
b
,
^
c
are
θ
1
,
θ
2
and
θ
3
respectively then
cos
θ
1
+
cos
θ
2
+
cos
θ
3
equals
View More
Related Videos
Integration by Substitution
MATHEMATICS
Watch in App
Explore more
Integration by Substitution
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app