CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
(i) fx=1-cos 2kxx2, ifx0 8 , ifx=0at x = 0

(ii) fx=(x-1)tanπx2, ifx1 k , ifx=1at x = 1

(iii) fx=k(x2-2x), ifx<0 cos x, ifx0at x = 0

(iv) fx=kx+1, ifxπcos x, ifx>πat x = π

(v) fx=kx+1, ifx53x-5, ifx>5at x = 5

(vi) fx=x2-25x-5,x5 k ,x=5at x = 5

(vii) fx=kx2,x1 4 ,x<1at x = 1

(viii) fx=k(x2+2), ifx03x+1 , ifx>0

(ix) fx=x3+x2-16x+20x-22, x2k, x=2

Open in App
Solution

(i) Given:
fx=1-cos 2kxx2, if x08 , if x=0

If f(x) is continuous at x = 0, then
limx0fx=f0limx01-cos2kxx2=8limx02k2sin2kxk2x2=82k2limx0sinkxkx2=82k2×1=8k2=4k=±2

(ii) Given:
fx=x-1tanπx2, if x1k, if x=1

If f(x) is continuous at x = 1, then
limx1fx=f1limx1x-1 tanπx2=k

Putting x-1=y, we get

limy0 y tanπy+12=klimy0 y tanπy2+π2=klimy0 y tanπ2+πy2=k-limy0 y cotπy2=k-2πlimy0 πy2cosπy2sinπy2=k-2π limy0cosπy2limy0sinπy2πy2=k-2π×11=kk=-2π

(iii) Given:
fx=kx2-2x, if x<0cosx, if x0
We have
(LHL at x = 0) = limx0-fx=limh0f0-h=limh0f-h=limh0kh2+2h=0
(RHL at x = 0) = limx0+fx=limh0f0+h=limh0fh=limh0cosh=1

limx0-fxlimx0+fx

Thus, no value of k exists for which fx is continuous at x=0.


(iv) Given:
fx=kx+1, if xπcosx, if x>π
We have
(LHL at x = π) = limxπ-fx=limh0fπ-h=limh0kπ-h+1=kπ+1
(RHL at x = π) = limxπ+fx=limh0fπ+h=limh0cosπ+h=cosπ=-1

If f(x) is continuous at x = π, then
limxπ-fx=limxπ+fx
kπ+1=-1k=-2π

(v) Given:
fx=kx+1, if x53x-5, if x>5

We have
(LHL at x = 5) = limx5-fx=limh0f5-h=limh0k5-h+1=5k+1
(RHL at x = 5) = limx5+fx=limh0f5+h=limh035+h-5=10

If f(x) is continuous at x = 5, then
limx5-fx=limx5+fx5k+1=10k=95

(vi) Given:
fx=x2-25x-5, x5k, x=5
fx=x-5x+5x-5, x5k, x=5
fx=x+5, x5k, x=5

If f(x) is continuous at x = 5, then
limx5fx=f5limx5x+5=kk=5+5=10

(vii) Given: fx=kx2, x14, x<1

We have
(LHL at x = 1) = limx1-fx=limh0f1-h=limh04=4
(RHL at x = 1) = limx1+fx=limh0f1+h=limh0k1+h2=k

If f(x) is continuous at x = 1, then
limx1-fx=limx1+fxk=4

(viii) Given:
fx=kx2+2, if x03x+1, if x>0
We have
(LHL at x = 0) = limx0-fx=limh0f0-h=limh0k-h2+2=2k
(RHL at x = 0) = limx0+fx=limh0f0+h=limh03h+1=1

If f(x) is continuous at x = 0, then
limx0-fx=limx0+fx2k=1k=12

(ix) Given:
fx=x3+x2-16x+20x-22, x2k, x=2
fx=x3+x2-16x+20x2-4x+4, x2k, x=2
fx=x+5, x2k, x=2

If f(x) is continuous at x = 2, then
limx2fx=f2limx2x+5=kk=2+5=7

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Modulus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon