Question

# In Figure, $$ABCD$$ is a trapezium with $$A B \parallel DC$$. If $$\triangle A E D$$ is similar to $$\Delta B E C,$$ prove that $$A D=B C$$

Solution

## In $$\Delta E D C$$ and $$\Delta E B A$$, we have $$\angle 1=\angle 2 \quad$$ [Alternate angles ]$$\angle 3=\angle 4\quad$$ [Alternate angles]  and $$\angle C E D=\angle A E B \quad$$ [ Vertically opposite angles ]$$\therefore \Delta E D C \sim \Delta E B A$$    [By AA criterion of similarity]$$\Rightarrow \dfrac{E D}{E B}=\dfrac{E C}{E A} \\ \Rightarrow \dfrac{E D}{EC}=\dfrac{E B}{E A} \quad \quad \dots (i)$$It is given that $$\Delta {AED} \sim \Delta {BEC}$$$$\therefore \dfrac{E D}{E C}=\dfrac{E A}{E B}=\dfrac{A D}{B C} \quad \quad\dots (ii)$$From $$(i)$$ and $$(ii)$$, we get,$$\dfrac{E B}{E A}=\dfrac{E A}{E B} \\ \Rightarrow (E B)^{2}=(E A)^{2} \\\Rightarrow E B=E A$$Substituting $$EB = EA$$ in $$(ii)$$, we get$$\dfrac{E A}{E A}=\dfrac{A D}{B C} \\ \Rightarrow \dfrac{A D}{B C}=1\\ \Rightarrow A D=B C$$Mathematics

Suggest Corrections

0

Similar questions
View More

People also searched for
View More