The correct option is
A True
In
△DBE,
DB=BE
Hence, ∠DBE=∠DEB=x ....(I)
In △DAE,
DA=AE
Hence, ∠DAE=∠DEA=y ...(II)
Now, In △ABE,
∠ABE+∠BAE+∠AEB=180∘ (Sum of angles of triangle)
∠ABE+∠BAE+∠BED+∠DEA=180∘
x+x+y+y=180∘
x+y=90∘
∠DEB+∠DEA=90∘
∠AEB=90∘
Hence, ∠AEB=∠AEC=90∘
In △AEF,
Sum of angles=180∘
∠AEF+∠EAF+∠EFA=180∘
∠AEF+∠EAF+90∘=180∘
∠AEF=90∘−∠EAF
We know, ∠AEC=90∘
∠AEF+∠FEC=90∘
90∘−∠EAF+∠FEC=90∘
or ∠EAF=∠FEC
Now, In △CEA,
Sum of angles =180∘
∠AEC+∠EAC+∠ACE=180∘
∠ACE=90∘−∠EAC ..(III)
Now, in △GCE
Sum of angles=180∘
∠GCE+∠GEC+∠CGE=180∘
(90∘−∠EAC)+2∠EAC+∠CGE=180∘
∠GCE=90∘−∠EAC ...(IV)
hence, from III and IV,
∠GCE=∠ACE
or GCE is an Isosceles triangle.