We have,
∫1√3x+5−√3x+2dx
On rationalize and we get,
∫1√3x+5−√3x+2×√3x+5+√3x+2√3x+5+√3x+2dx
=∫√3x+5+√3x+2(√3x+5)2−(√3x+2)2dx
=∫√3x+5+√3x+23x+5−3x−2dx
=13∫√3x+5dx+13∫√3x+2dx
=13∫(3x+5)12dx+13∫(3x+2)12dx∴∫(ax+b)n=(ax+b)n+1a(n+1)
=13(3x+5)12+13(12+1)+13(3x+2)12+13(12+1)
=19(3x+5)3232+19(3x+2)3232
=29⎡⎢⎣(3x+5)32+(3x+2)32⎤⎥⎦
Hence, this is the answer.