Consider the given integral.
I=∫(1+cotxx+log(sinx))dx
Put t=x+log(sinx)
dtdx=1+1sinx×cosx
dt=(1+cotx)dx
Therefore,
I=∫dtt
I=ln(t)+c
On putting the value of t, we get
I=ln(x+log(sinx))+c
Hence, the value of integral is I=ln(x+log(sinx))+c.