Question

# k transparent slabs are arranged one over another. The refractive indices of the slabs are μ1, μ2, μ3, ... μk and the thicknesses are t1 t2, t3, ... tk. An object is seen through this combination with nearly perpendicular light. Find the equivalent refractive index of the system which will allow the image to be formed at the same place.

Open in App
Solution

## k number of transparent slabs are arranged one over the other. Refractive indices of the slabs = μ1, μ2, μ3, ..., μk Thickness of the slabs = t1, t2, t3,.., tk Shift due to one slab: $∆t=\left[1-\frac{1}{\mathrm{\mu }}\right]t$ For the combination of multiple slabs, the shift is given by, $∆t=\left[1-\frac{1}{{\mathrm{\mu }}_{1}}\right]{t}_{1}+\left[1-\frac{1}{{\mathrm{\mu }}_{2}}\right]{t}_{2}+...+\left[1-\frac{1}{{\mathrm{\mu }}_{k}}\right]{t}_{k}...\left(\mathrm{i}\right)$ Let μ be the refractive index of the combination of slabs. The image is formed at the same place. So, the shift will be: $\mathrm{\Delta }t=\left[1-\left(\frac{1}{\mathrm{\mu }}\right)\right]\left({t}_{1}+{t}_{2}...+{t}_{k}\right)...\left(\mathrm{ii}\right)$ Equating (i) and (ii), we get: $\left[1-\left(\frac{1}{\mathrm{\mu }}\right)\right]\left({t}_{1}+{t}_{2}...+{t}_{k}\right)=\left[1-\frac{1}{{\mathrm{\mu }}_{1}}\right]{t}_{1}+\left[1-\frac{1}{{\mathrm{\mu }}_{2}}\right]{t}_{2}+\left[1-\frac{1}{{\mathrm{\mu }}_{k}}\right]{t}_{k}\phantom{\rule{0ex}{0ex}}=\left({t}_{1}+{t}_{2}...+{t}_{k}\right)-\left(\frac{{t}_{1}}{{\mathrm{\mu }}_{1}}+\frac{{t}_{2}}{{\mathrm{\mu }}_{2}}+\frac{{t}_{k}}{{\mathrm{\mu }}_{k}}\right)\phantom{\rule{0ex}{0ex}}=-\frac{1}{\mathrm{\mu }}\sum _{\mathrm{i}=1}^{\mathrm{k}}{t}_{\mathrm{i}}=-\sum _{\mathrm{i}=1}^{\mathrm{k}}\left(\frac{{t}_{\mathrm{i}}}{{\mathrm{\mu }}_{\mathrm{i}}}\right)\phantom{\rule{0ex}{0ex}}⇒\mathrm{\mu }=\frac{\sum _{\mathrm{i}=1}^{\mathrm{k}}{t}_{\mathrm{i}}}{-\sum _{\mathrm{i}=1}^{\mathrm{k}}\left({t}_{\mathrm{i}}}{{\mathrm{\mu }}_{\mathrm{i}}}\right)}$ Hence, the required equivalent refractive index is $\frac{\sum _{\mathrm{i}=1}^{\mathrm{k}}{t}_{\mathrm{i}}}{\sum _{\mathrm{i}=1}^{\mathrm{k}}\left({t}_{\mathrm{i}}}{{\mathrm{\mu }}_{\mathrm{i}}}\right)}$.

Suggest Corrections
0
Join BYJU'S Learning Program
Select...
Related Videos
Playing with Glass Slabs
PHYSICS
Watch in App
Explore more
Join BYJU'S Learning Program
Select...