The correct option is C 18
We have
(1+cosπ8)(1+cos3π8)(1+cos5π8)(1+cos7π8)=(1+cosπ8)(1+cos3π8)(1+cos(π−3π8))(1+cos(π−π8))=(1+cosπ8)(1+cos3π8)(1−cos3π8)(1−cosπ8)=(1−cos2π8)(1+cos3π8)=sin2π8sin23π8=14[2sinπ8sin(π2−π8)]2=14[2sinπ8cosπ8]2=14.sin2π4=14×12=18
∴ (c) is the correct answer.