Byju's Answer
Standard XII
Mathematics
Inverse of a Matrix
|[ b+c a-c a-...
Question
∣
∣ ∣
∣
b
+
c
a
−
c
a
−
b
b
−
c
c
+
a
b
−
a
c
−
b
c
−
a
a
+
b
∣
∣ ∣
∣
=
A
4
a
b
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
6
a
b
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
8
a
b
c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2
a
b
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
8
a
b
c
∣
∣ ∣
∣
b
+
c
a
−
c
a
−
b
b
−
c
c
+
a
b
−
a
c
−
b
c
−
a
a
+
b
∣
∣ ∣
∣
R
1
→
R
1
+
R
2
∣
∣ ∣
∣
2
b
2
a
0
b
−
c
c
+
a
b
−
a
c
−
b
c
−
a
a
+
b
∣
∣ ∣
∣
R
2
→
R
2
+
R
3
∣
∣ ∣
∣
2
b
2
a
0
0
2
c
2
b
c
−
b
c
−
a
a
+
b
∣
∣ ∣
∣
=
2
b
(
2
c
(
a
+
b
)
+
2
b
(
a
−
c
)
)
+
2
a
(
2
b
(
c
−
b
)
)
=
2
b
(
2
a
c
+
2
b
c
+
2
a
b
−
2
b
c
)
+
2
a
(
2
b
(
c
−
b
)
)
=
4
(
b
(
a
c
+
a
b
)
)
+
4
(
a
b
(
c
−
b
)
)
=
4
a
b
c
+
4
a
b
2
+
4
a
b
c
−
4
a
b
2
=
8
a
b
c
Suggest Corrections
0
Similar questions
Q.
∣
∣ ∣
∣
b
+
c
a
−
c
a
−
b
b
−
c
c
+
a
b
−
a
c
−
b
c
−
a
a
+
b
∣
∣ ∣
∣
=
Q.
Prove that
6
a
b
c
<
b
c
(
b
+
c
)
+
c
a
(
c
+
a
)
+
a
b
(
a
+
b
)
Q.
Prove that
∣
∣ ∣
∣
b
+
c
c
+
a
a
+
b
c
+
a
a
+
b
b
+
c
a
+
b
b
+
c
c
+
a
∣
∣ ∣
∣
=
=
2
(
a
+
b
+
c
)
(
a
b
+
b
c
+
c
a
−
a
2
−
b
2
−
c
2
)
Q.
Prove the following identity:
a
(
b
−
c
)
2
(
c
−
a
)
(
a
−
b
)
+
b
(
c
−
a
)
2
(
a
−
b
)
(
b
−
c
)
+
c
(
a
−
b
)
2
(
b
−
c
)
(
c
−
a
)
=
a
+
b
+
c
.
Q.
Show that :
∣
∣ ∣ ∣
∣
b
c
−
a
2
c
a
−
b
2
a
b
−
c
2
−
b
c
+
c
a
+
c
b
b
c
−
c
a
+
a
b
b
c
+
c
a
−
a
b
(
a
+
b
)
(
a
+
c
)
(
b
+
c
)
(
b
+
a
)
(
c
+
a
)
(
c
+
b
)
∣
∣ ∣ ∣
∣
=
3
(
b
−
c
)
(
c
−
a
)
(
a
−
b
)
(
a
+
b
+
c
)
(
b
c
+
c
a
+
a
b
)
.
View More
Related Videos
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Explore more
Inverse of a Matrix
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app