The correct option is B 4k
Let z=(1)1/n=(cos2kπ+i sin2kπ)1/n
=cos2kπn+isin2kπn, k=0,1,2,⋯,n−1
Let z1=cos2k1πn+isin2k1πn
z2=cos2k2πn+isin2k2πn
be the two values of z such that they subtend angle of 90∘ at origin.
Then, 2k1πn−2k2πn=±π2
⇒ 4(k1−k2)=±n
As, k1 and k2 are integers and k1≠k2
Therefore, n=4k,k∈Z