The correct option is
D (4+16√3, 32+13√3)Let M be the midpoint of line AB. Then
M (x1+x22,y1+y22) ⟹ M (4,32)
Slope of line AB =ΔyΔx=y2−y1x2−x1=1−25−3=−12
As the product of two perpendicular line is always 1.
Then, Slope of line MP × Slope of line AB =1
Therefore, Slope of line MP =−1−1/2=2
Slope =tanθ
⇒sinθcosθ=2
sinθcosθ=21=2√22+121√22+12=2√51√5
⟹sinθ=2√5 and cosθ=1√5 -------------------eq(i)
Given triangle is an equilateral triangle.
So all sides and angles are equal and each angle equals to 60o
Side of the given triangle =√(x2−x1)2+(y2−y1)2=√(5−3)2+(1−2)2=√5
Let PM be h
PB as a=√5
In △PBM,
∠PBM=60o
∠PMB=90o
Hypotenuse =a
So, sin 60o=ha
As sinθ=perpendicularhypotenuse
⟹h=a×sin60o=√5×√32=√152
For point P:
x−4cosθ=y−3/2sinθ=h
Here, (4,3/2) are coordinates of point M
y−3/2sinθ=h=√152
⟹y=32+√3
x−4cosθ=h=√152
⟹x=4+√32
P(4+√32,32+√3)
Orthocenter (x1+x2+x33,y1+y2+y33)
Orthocenter (3+5+4+√3/23,2+1+3/2+√33)
Orthocenter (4+√36,32+√33)
Hence, option D is correct.