Let AB be a focal chord (not the latus rectum) of the parabola y2=4px where p is a prime number(p>0), such that the lengths, SA and SB are integers(S being the focus of the parabola). If the tangents to the parabola at A and B meet at point P, then
PA=(p+1)√p+1
PB=(p+1)√p(p+1)
SP=(p+1)√p
AB=(p+1)2
Let SA=a, SB=b, then 1a+1b=1p
=a+bab=1p
=p(a+b)=ab
⇒(a−p)(b−p)=p2⇒a=p+1, b=p+p2
So, AB=a+b=p2+2p+1=(p+1)2
Since, AB is the focal chord, P lies on the directrix and the tangents, so, PA and PB are perpendicular.
⇒SP=√SA×SB=√(p+1)(p+p2)=(p+1)√p
PA=√SP2+SA2, and PB=√SP2+SB2
⇒PA=√(p+1)2p+(p+1)2=(p+1)√p+1
and PB=√(p+1)2p+p2(p+1)2=(p+1)√p(p+1)