CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Let $$\alpha \epsilon (0, \pi/2)$$ be fixed. If the integral $$\int \dfrac {\tan x + \tan \alpha}{\tan x - \tan \alpha} dx =$$
$$A (x) \cos 2\alpha + B(x) \sin 2\alpha + C$$, where $$C$$ is a constant of integration, then the functions $$A(x)$$ and $$B(x)$$ are respectively.


A
xα and loge|cos(xα)|
loader
B
x+α and loge|sin(xα)|
loader
C
xα and loge|sin(xα)|
loader
D
x+α and loge|sin(x+α)|
loader

Solution

The correct option is C $$x - \alpha$$ and $$\log_{e} |\sin (x - \alpha)|$$
$$\int \dfrac {\tan x + \tan \alpha}{\tan x - \tan \alpha} dx = \int \dfrac {\sin (x + \alpha)}{\sin (x - \alpha)}dx$$
Let $$x - \alpha = t$$
$$\Rightarrow \int \dfrac {\sin (t + 2\alpha)}{\sin t}dt = \int \cos 2\alpha dt + \int \cot (t)\sin 2\alpha dt$$
$$= t.\cos 2\alpha + ln |\sin t|.\sin 2\alpha + C$$
$$= (x - \alpha)\cos 2\alpha + ln|\sin (x - \alpha)|.\sin 2\alpha + C$$.

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image