CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Let $$\displaystyle z_{1}$$,$$\displaystyle z_{2}$$,$$\displaystyle z_{3}$$are vertices of an equilateral triangle circumscribing the circle  $$\left | z \right |=1$$,if $$\displaystyle z_{1}=1+i\sqrt{3}$$ and$$\displaystyle z_{1}$$,$$\displaystyle z_{2}$$,$$\displaystyle z_{3}$$ are in anticlockwise sense, then $$z_2$$ equals


A
2
loader
B
2
loader
C
i+32
loader
D
1+i32
loader

Solution

The correct option is A $$-2$$

This is a circle with centre at origin and radius $$=1$$
$$|z| =1$$ .
$$z_{1} = 1+i\sqrt 3 = 2(cos \dfrac{\pi}{3} + isin\dfrac{\pi}{3}) = 2e^{i\pi /3}$$
From figure, $$z_{2}$$ can be obtained by rotating $$z_{1}$$ by $$120^{\circ}$$
$$\therefore z_{2} = z_{1} e^{i2\pi /3} = 2e^{\pi} = 2(cos \pi +isin\pi) = -2$$

916912_156962_ans_28184e4ff80f4460b00705b74d5892b1.png

Maths

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image