Let f(x)=ax3+bx2+cx+dsinx. If the condition that f(x) is always one-one function is bt<ka(c−|d|) Find k+t
Open in App
Solution
f(x)=ax3+bx2+cx+dsinx f′(x)=3ax2+2bx+c−dcosx For f(x) to be one-one function,f′(x)>0∀x∈R 3ax2+2bx+c−dcosx>0⇒3ax2+2bc+c−|d|>0 ⇒(2b)2−4.3a(c−|d|)<0⇒b2<3a(c−|d|)