Question

# Let f (x) = $$log_2$$ $$\left (\left | sin x \right | +\left | cos x \right |\right )$$,then range of f(x) is

A
0,12
B
0,3
C
12,0
D
0,1

Solution

## The correct option is A $$0, \dfrac{1}{2}$$Here, $$f(x)=\log_2(|\sin x|+|cos x|)$$Let $$t=|\sin x|+|\cos x|$$ Then $$f(x)=\log_2t$$......(1)Squaring both sides we get$$t^2=(|\sin x|)^2+(|\cos x|)^2+|i\sin 2x|$$$$=\sin^2x+\cos^2x+|\sin 2x|$$$$t^2=1+|\sin 2x|$$      $$(\because \sin^2x+\cos^2x=1)$$Here, $$|\sin 2x|\in [0, 1]$$ ( Clearly $$|\sin x|\in [0, 1]$$ so )$$\therefore t=\sqrt{1+|\sin 2x|}$$     $$t_{max}=\sqrt{1+1}=\sqrt 2$$$$\therefore t_{min}m=\sqrt{1+0}=1$$$$\therefore t\in [1, \sqrt 2]$$.........(2)Now, Using (2) in eqn (1), we shall find the range of $$f(x)$$ :-$$f(x)=\log_2t$$ and $$t\in [1, \sqrt 2]$$i.e. $$1\le t\le \sqrt 2$$Take $$\log_2$$ we get.$$\Rightarrow \log_21\le \log_2 t\le \log_2 \sqrt 2$$$$\Rightarrow 0\le f(x) \le \log_2 2^{1/2}$$      $$\left(\because \log 1=0\\ \log_2 2=1\right.$$$$\Rightarrow 0\le f(x) \le \dfrac{1}{2}\log_2 2$$$$\therefore 0\le f(x) \le \dfrac{1}{2}$$$$\therefore$$ option $$A$$ is correctie $$\left[0, \dfrac{1}{2}\right]$$.Mathematics

Suggest Corrections

0

Similar questions
View More

People also searched for
View More