Let positive real numbers x and y be such that 3x+4y =14. The maximum value of x3y4is
We have,
3x+4y=14.......(1)
4y=14−3x
y=14−3x4
Let S be the maximum
So,
S=x3y4
S=x3(14−3x4)4
S=1256x3(14−3x)4
Differentiating this equation with respect to x and we get,
dsdx=1256ddxx3(14−3x)4
dsdx=1256[x3ddx(14−3x)4+(14−3x)4ddxx3]
dsdx=1256[x34(14−3x)3(−3)+3x2(14−3x)4]
dsdx=3256[x2(14−3x)4−4x3(14−3x)3].......(2)
For maximum and minimum
dsdx=0
3256[x2(14−3x)4−4x3(14−3x)3]=0
x2(14−3x)4−4x3(14−3x)3=0
x2(14−3x)4=4x3(14−3x)3
4x3(14−3x)3=x2(14−3x)4
4x=(14−3x)
4x+3x=14
7x=14
x=2
Again differentiating equation (2) and we get,
d2sdx2=ddx[3256[x2(14−3x)4−4x3(14−3x)3]]
=3256[x2ddx(14−3x)4+(14−3x)4ddxx2−4(x3ddx(14−3x)3+(14−3x)3ddxx3)]
=3256[x24(14−3x)3(−3)+(14−3x)42x−4(x33(14−3x)2(−3)+(14−3x)33x2)]
=3256[−12x2(14−3x)3+2x(14−3x)4+36x3(14−3x)2−12x2(14−3x)3]
=3256[2x(14−3x)4−24x2(14−3x)3+36x3(14−3x)2]
d2sdx2=3256[2x(14−3x)4−24x2(14−3x)3+36x3(14−3x)2]
d2sdx2=3256[2(2)(14−3(2))4−24(2)2(14−3(2))3+36(2)3(14−3(2))2]
d2sdx2=3256[4×84−24×6×83+36×8×82]
d2sdx2=3×83256[4×8−24×6+36×8]
d2sdx2=3×512256[32−144+288]
d2sdx2=3×2[320−144]
d2sdx2=6×176
d2sdx2=1056
Hence, this is the answer.