wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let positive real numbers x and y be such that 3x+4y =14. The maximum value of x3y4is

A
1056
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
128
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
216
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
432
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1056

We have,

3x+4y=14.......(1)

4y=143x

y=143x4

Let S be the maximum

So,

S=x3y4

S=x3(143x4)4

S=1256x3(143x)4

Differentiating this equation with respect to x and we get,

dsdx=1256ddxx3(143x)4

dsdx=1256[x3ddx(143x)4+(143x)4ddxx3]

dsdx=1256[x34(143x)3(3)+3x2(143x)4]

dsdx=3256[x2(143x)44x3(143x)3].......(2)

For maximum and minimum

dsdx=0

3256[x2(143x)44x3(143x)3]=0

x2(143x)44x3(143x)3=0

x2(143x)4=4x3(143x)3

4x3(143x)3=x2(143x)4

4x=(143x)

4x+3x=14

7x=14

x=2

Again differentiating equation (2) and we get,

d2sdx2=ddx[3256[x2(143x)44x3(143x)3]]

=3256[x2ddx(143x)4+(143x)4ddxx24(x3ddx(143x)3+(143x)3ddxx3)]

=3256[x24(143x)3(3)+(143x)42x4(x33(143x)2(3)+(143x)33x2)]

=3256[12x2(143x)3+2x(143x)4+36x3(143x)212x2(143x)3]

=3256[2x(143x)424x2(143x)3+36x3(143x)2]

Put x=2 and we get,

d2sdx2=3256[2x(143x)424x2(143x)3+36x3(143x)2]

d2sdx2=3256[2(2)(143(2))424(2)2(143(2))3+36(2)3(143(2))2]

d2sdx2=3256[4×8424×6×83+36×8×82]

d2sdx2=3×83256[4×824×6+36×8]

d2sdx2=3×512256[32144+288]

d2sdx2=3×2[320144]

d2sdx2=6×176

d2sdx2=1056

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon