  Question

Let $${T}_{r}$$ be the $$r$$th term of an AP, for $$r=1,2,....$$ if for some positive integers $$m,n$$ we have $${T}_{m}=1/n$$ and  $${T}_{n}=1/m$$, then $${T}_{m/n}$$ equal to ________

A
1mn  B
1m+1n  C
1n2  D
0  Solution

The correct option is A $$\cfrac{1}{n^2}$$We  have$${T_m} = \frac{1}{n}$$ and$${T_n} = \frac{1}{m}$$  $${T_m} = \frac{1}{n} = a + \left( {n - 1} \right)d\,\,\,\,\,\,\,\,\,\, - - - \left( 1 \right)$$And$${T_n} = \frac{1}{m} = a + \left( {n - 1} \right)d\,\,\,\,\,\,\,\,\,\, - - - \left( 2 \right)$$By $$(1)-(2)\,\,equ^n$$ We get,$${T_m} - {T_n} = \frac{1}{n} - \frac{1}{m} = \left( {m - n} \right)d$$$$d = \frac{1}{{mn}}\,\,\,\,\,\,\,\,\,\, - - - \left( 3 \right)$$By putting value of $$d$$ in $$equ^n \,\,(1)$$ we get,$$a = \frac{1}{n} - \frac{{\left( {m - 1} \right)}}{{mn}}$$$${T_{\frac{m}{n}}} = \frac{1}{n} - \frac{{m - 1}}{{mn}} + \frac{1}{{mn}}.\left( {\frac{m}{n} - 1} \right)$$$$\,\,\,\,\, = \frac{1}{n} - \frac{1}{n} + \frac{1}{{mn}} + \frac{1}{{{n^2}}} - \frac{1}{{mn}}$$   $$\,\,\,\,\,\, = \frac{1}{{{n^2}}}$$Maths

Suggest Corrections  0  Similar questions
View More  People also searched for
View More 