The correct options are
C e2=√85
D e1=√25
From the equation of the hypberbola, the foci of the hyperbola lie on x− axis
∴ Ellipse will be horizontal ellipse.
Here e1 is the eccentricity of ellipse and e2 is eccentricity of hyperbola.
Now, x2a2+y2b2=4
⇒x2(2a)2+y2(2b)2=1
⇒e21=1−(2b)2(2a)2
⇒e22=b2a2+1
⇒e21+e22=2⋯(1)
As foci of the ellipse will be same as that of hyperbola
∴2ae1=ae2⇒e2=2e1⋯(2)
From (1) and (2), we get
e1=√25,e2=√85