CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

Let
$$\times$$ : Stands for $$=$$
$$<$$  : Stands for $$≠$$
$$-$$ : Stands for $$>$$
$$+$$ : Stands for $$\not>$$
$$>$$ : Stands for $$<$$
$$=$$ : Stands for $$\not<$$,
then $$p + q - r$$ can not be written as 


A
p×q=r
loader
B
p+q<r
loader
C
p=q=r
loader
D
pqr
loader

Solution

The correct option is D $$p - q - r$$
$$p + q - r$$ stands $$p \not > q > r$$ or $$p ≤q>r$$
A. 
$$p\times q = r$$ stands for $$p = q \not< r$$ or $$p = q ≥ r$$   Possible

B. 
$$p + q < r$$ stands for $$p ≤ q > r$$ or $$p ≤ q < r$$  Possible

C. 
$$p = q = r$$ stands for $$p≥ q ≥ r$$  Possible
D. 
$$p - q - r$$ stands $$p > q > r$$    Not Possible
So, option D is correct.

Logical Reasoning

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image