Question

# Let $$\vec{a} = x^{2}\hat{i}+2\hat{j}-2\hat{k},\vec{b} = \hat{i}-\hat{j}+\hat{k}$$ and $$\vec{c} = x^{2}\hat{i}+5\hat{j}-4\hat{k}$$ be three vectors. Find the values of x for which the angle between $$\vec{a}$$ and $$\vec{b}$$ is acute and the angle between $$\vec{b}$$ and $$\vec{c}$$ is obtuse.

A
(3,2)(2,3)
B
(3,1)(1,3)
C
(3,1)(1,3)
D
(3,2)(2,3)

Solution

## The correct option is A $$(-3,-2)\cup (2,3)$$We have $$\vec{a}={x}^{2}\hat{i}+2\hat{j}-2\hat{k},\,\vec{b}=\hat{i}-\hat{j}+\hat{k}$$ and $$\vec{c}={x}^{2}\hat{i}+5\hat{j}-4\hat{k}$$Given that $${\theta}_{1}$$ is acute and $${\theta}_{2}$$ is obtuse.$$\Rightarrow\,\cos{{\theta}_{1}}>0$$ and $$\cos{{\theta}_{2}}<0$$$$\Rightarrow\,\dfrac{\vec{a}.\vec{b}}{\left|\vec{a}\right|.\left|\vec{b}\right|}>0$$ and $$\dfrac{\vec{b}.\vec{c}}{\left|\vec{b}\right|.\left|\vec{c}\right|}<0$$$$\Rightarrow\,\dfrac{{x}^{2}-4}{\sqrt{{x}^{4}+4+4}\sqrt{1+1+1}}>0$$ and $$\dfrac{{x}^{2}-9}{\sqrt{{x}^{4}+25+16}\sqrt{1+1+1}}>0$$$$\Rightarrow\,{x}^{2}-4>0$$ and $${x}^{2}-9<0$$$$\Rightarrow\,x\in\left(-\infty,-2\right)\cup\left(2,\infty\right)$$ and $$x\in\left(-3,3\right)$$$$\therefore\,x\in\left(-3,-2\right)\cup\left(2,3\right)$$Maths

Suggest Corrections

0

Similar questions
View More

People also searched for
View More