Let →u=^i+^j, →v=^i−^j,→w=^i+2^j+3^k. If →n is a unit vector such that →u⋅→n=0, →v⋅→n=0, then |→w⋅→n|=
→V=2^i+^j−^k and →W=^i+3^k. If →U is a unit vector, then the maximum value of the scalar triple product [→U →V →W] is