Let Z be an exponential random variable with mean 1. That is, the cumulative distribution function of Z is given by
Fz(x)=(1−e−xifx≥00ifx<0
Then Pr(Z > 2 | Z > 1), rounded off to two decimal places, is equal to
Cumulative distribution function of z is
FZ(x)=(1−e−xifx≥00ifx<0
PdffZ(x)=dFZ(x)dx
Fz(x)=(e−xifx≥00ifx<0
ρ(z>2z>1)=ρ((z>2)∩(z>1))ρ(z>1)
=ρ(z>2)ρ(z>1)
ρ(z>2)=∫∞2e−xdx=e−2
ρ(z>1)=∫∞1e−xdx=e−1
henceρ(z>2z>1)=ρ(z>2)ρ(z>1)=e−2e−1=e−1=0.367