wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

lf f(x)=tanx1+tan2x, Limx(π/2)f(x)=a and Limx(π/2)+f(x)=b then

A
a=b
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a=1+b
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a+b=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
a+b=2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B a+b=0
Given f(x)=tanx1+tan2x


Limx(π/2)f(x)=a

Limx(π/2)+f(x)=b


f(x)=tanxsec2x [sec2x=1+tan2x]

=tanx|secx|


a=Limx(π/2)f(x)

=Limx(π/2)tanx|secx|

here x(π/2) i.e., x<π2 which lies in 1st Quadrant

So, |secx|=secx

a=Limx(π/2)tanxsecx

=Limx(π/2)sinxcosx.secx

=Limx(π/2)sinx

=sinπ2

=1

Similarly

b=Limx(π2)+tanx|secx|

here

x(π2)+ i.e., x>π2 which lies in 2nd Quadrant |secx|=secx

b=Limx(π2)+tanxsecx

=Limx(π2)+sinxcosx×(secx)

=Limx(π2)+sinx

=sinπ/2

=1

a+b=1+(1)=0

a+b=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon