limx→11−x−1/31−x−2/3
Here putting the limit x→1 we
get 00 from (undefined form )
None we can apply L-Hospital Rule
⇒limx→1d(1−x1−/3)d(1−x−2/3)
⇒limx→10−(−13x−1/3−1)0−(−23x−2/3−1) {ddx(xn)=nxn−1=d(x)n
⇒limx→1+13x−4/3+23x−5/3
⇒limx→112x−4/3+53
⇒limx→112x13
⇒12(1)1/3⇒12