CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question


Lines $$m$$ and $$n$$ are cut by a transversal so that $$\angle 1$$ and $$\angle 5$$ are corresponding angles. If $$\angle 1=26x-{7}^{\circ}$$ and $$\angle 5=20x+{17}^{\circ}.$$ What value of $$x$$ makes the lines $$m$$ and $$n$$ parallel?
269938_800d8f686c3a47668d966d754d5b48fc.png


A
5
loader
B
4
loader
C
412
loader
D
314
loader

Solution

The correct option is B $$4$$
For the lines $$m$$ and $$n$$ to be parallel, corresponding angles should be equal, i.e, $$\angle 1=\angle 5$$

$$\Rightarrow$$ $$26x-{7}^{\circ}=20x+{17}^{\circ}$$

$$\Rightarrow$$ $$6x={24}^{\circ}$$ 

$$\Rightarrow$$ $$x={4}^{\circ}$$

Mathematics

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image