Match the column
Column AColumn B1.cos2π7 + cos4π7 + cos6π7 A.0 2.cosπ7 + cos2π7 +cos3π7 + cos4π7 + cos5π7 + cos6π7 B.123.sinπ11 + sin3π11 + sin5π11 + sin7π11 + sin9π11 C.−12
1 - C, 2 - A, 3 - B
We know, cosα + cos(α+β) + cos(α+2β) + .......... cos(α+(n−1)β)
just apply that formula
α = 2π7
β = 2π7
n = 3
= sin(3×2π2×7)sin(2π2×7)×cos(2π7+(3−1)2×2π7)
= sin(3π7)×cos(4π7)sin(π7)
= sin3π7.cos(π−3π7)sin(π7) [cos (π−θ) = - cos θ]
= sin3π7[−cos3π7]sinπ7
= −sin3π7.cos3π7sinπ7
We need to further simplify the expression, we observe that numerator is in the form of sin θ × cosθ.Apply the formula sin2θ = 2sinθ × cosθ
Multiplying 2 in numerator and denominator
We observe that we can have same trigonometric function in numerator and denominator by writing numerator as sin (π−θ) form because sin (π−θ) = sin θ
we Know,
sin6π14×0sinπ14 = 0
3. cosπ11 + cos3π11 + cos5π11 + cos7π11 + cos9π11
= π11, β = 2π11,n=5
= sin(5×2π2×11)sin(2π2×11).cos(π11+4×2π2×11)
Multiply and divide by 2 in the above expression.