Question

# Match the following. The codes for the lists have choices $$(A),\,(B),\,(C)\;and\;(D)$$ out of which only ONE is correct.Codes :$$\;\;\;\;\;\;\;$$ P Q R S(A)$$\;\;\;\;\;4\;3\;2\;1$$(B)$$\;\;\;\;\;2\;1\;4\;3$$(C)$$\;\;\;\;\;4\;3\;1\;2$$(D)$$\;\;\;\;\;2\;4\;3\;1$$

Solution

## Code $$(C)\;:\;(P)-4,\;(Q)-3,\;(R)-1,\;(S)-2$$$$(P)$$ Limit is easily reducible to $$cosec^{-1}\begin{pmatrix}\displaystyle\frac{k^2}{2}\end{pmatrix}$$ by L Hospital rule which exist if $$\displaystyle\frac{k^2}{2}\,\ge\,1$$.$$(Q)\;kx^2+(3-2k)x-6=(kx+3)(kx-2)$$$$\Rightarrow 4\,\le\,\displaystyle\frac{3}{k}\,\le\,5\,\Rightarrow\,-\displaystyle\frac{3}{4}\,\le\,k\,\le\,-\displaystyle\frac{3}{5}$$.$$(R)\;(2k+1,\,k-1)$$ is an interior point$$\Rightarrow (2k+1)^2+(k-1)^2-2(2k+1)-4(k-1)-4\,<\,0$$$$\Rightarrow 0\,<\,k\,<\,\displaystyle\frac{6}{5}\;\;\;\;\;\;\;\;\;\;\;\;\;\;.....(1)$$$$\Rightarrow$$Centre $$(1,\,2)$$ and point $$(2k+1,\,k-1)$$ must lie on opposite side of chord $$x+y-z=0$$$$\Rightarrow k\,<\,\displaystyle\frac{2}{3}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;......(2)$$$$\Rightarrow 0\,<\,k\,<\,\displaystyle\frac{2}{3}$$$$(S)\;x\,>\,-\displaystyle\frac{5}{2},\,-4\,<\,x\,<\,4\,\Rightarrow\,x\,\in\,\begin{pmatrix}-\displaystyle\frac{5}{2},\,4\end{pmatrix}$$$$\Rightarrow \log_5\begin{pmatrix}\displaystyle\frac{16-x^2}{2x+5}\end{pmatrix}\,\le\,1$$$$\Rightarrow\,\displaystyle\frac{16-x^2}{2x+5}\,\le\,5^1$$$$\Rightarrow\,x\,\in\,(-\infty,\,-9)\,\cup\,[-1,\,\infty]$$$$\therefore\;x\,\in\,[-1,\,4]$$Mathematics

Suggest Corrections

0

Similar questions
View More

People also searched for
View More