Case 1:
(4x−3y)2
Using the identity (a−b)2=a2+b2−2ab,
(4x−3y)2=(4x)2+(3y)2−2×4x×3y
⇒(4x−3y)2=16x2+9y2−24xy
Case 2:
(x+5y)2
Using the identity (a+b)2=a2+b2+2ab,
(x+5y)2=(x)2+(5y)2+2×x×5y
⇒(x+5y)2=x2+25y2+10xy
Case 3:
(x+6)(x−6)
Using the identity (a+b)(a−b)=a2−b2,
(x+6)(x−6)=(x)2−(6)2
⇒(x+6)(x−6)=x2−36
Case 4:
(x+3)(x+5)
Using the identity (x+a)(x+b)=x2+(a+b)x+ab,
(x+3)(x+5)=x2+(3+5)x+3×5
⇒(x+3)(x+5)=x2+8x+15