Question

# $$\mathrm{A}$$ variable line drawn through the point ofÂ intersection of the lines $$\displaystyle \frac{x}{a}+\frac{y}{b}=1,\frac{x}{b}+\frac{y}{a}=1$$ meets the coordinate axes in $${A}$$ and $${B}$$. Then the locus of the mid point of $$AB$$ isÂ

A
2xy(a+b)=ab(x+y)
B
xy(a+b)=ab(xy)
C
xy(a+b)=ab(x+y)
D
xy(a+b)=2ab(x+y)

Solution

## The correct option is A $$2xy({a}+{b})={a}{b}({x}+{y})$$Let $$C$$ be the point of intersection of the lines. Then, $$\displaystyle C=\left( \frac { ab }{ a+b } +\frac { ab }{ a+b } \right)$$Let $$M(h,k)$$ be the mid- point of $$AB$$Then, the equation of $$A$$ may be written as $$\displaystyle \frac { x }{ 2h } +\frac { y }{ 2k } =1$$Since $$AB$$ passes through $$C,$$ we have$$\displaystyle \frac { ab }{ 2h\left( a+b \right) } +\frac { ab }{ 2k\left( a+b \right) } =1\Rightarrow \frac { 1 }{ h } +\frac { 1 }{ k } =\frac { 2\left( a+b \right) }{ ab }$$Therefore locus of $$M(h,k)$$ is $$\displaystyle \frac { 1 }{ x } +\frac { 1 }{ y } =\frac { 2\left( a+b \right) }{ ab }$$$$\Rightarrow 2xy\left( a+b \right) =ab\left( x+y \right)$$Maths

Suggest Corrections
Â
0

Similar questions
View More

People also searched for
View More