Byju's Answer
Standard XII
Mathematics
Range of Trigonometric Expressions
Minimum value...
Question
Minimum value of the expression
4
sin
(
x
−
π
6
)
−
6
√
2
cos
(
x
+
π
4
)
is
A
−
√
112
+
24
√
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−
√
28
+
24
√
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−
√
56
+
2
√
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−
√
84
+
2
√
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
−
√
112
+
24
√
3
sin
(
x
−
π
6
)
=
sin
x
cos
π
6
−
cos
x
sin
π
6
=
√
3
2
sin
x
−
1
2
cos
x
cos
(
x
+
π
4
)
=
cos
x
cos
π
4
−
sin
x
sin
π
4
=
1
√
2
cos
x
−
1
√
2
sin
x
Now,
4
sin
(
x
−
π
6
)
−
6
√
2
cos
(
x
+
π
4
)
=
(
2
√
3
+
6
)
sin
x
−
8
cos
x
Minimim value is
−
√
(
2
√
3
+
6
)
2
+
(
−
8
)
2
=
−
√
112
+
24
√
3
Suggest Corrections
0
Similar questions
Q.
If set of all values of
x
∈
(
−
π
2
,
π
2
)
satisfying
|
4
sin
x
+
√
2
|
<
√
6
is
(
a
π
24
,
b
π
24
)
, then the value of
∣
∣
∣
a
−
b
3
∣
∣
∣
=
Q.
If
∫
1
s
i
n
x
t
2
.
f
(
t
)
d
t
=
1
−
s
i
n
x
,
∀
x
ϵ
(
0
,
π
2
)
then the value of
f
(
1
√
3
)
is
Q.
Minimum value of the expression
4
sin
(
x
−
π
6
)
−
6
√
2
cos
(
x
+
π
4
)
is
Q.
Prove
cot
π
24
=
√
2
+
√
3
+
√
4
+
√
6
?
Q.
Prove cot π/24=√2+√3+√4+√6
View More
Explore more
Range of Trigonometric Expressions
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app