Byju's Answer
Standard XII
Mathematics
Absolute Value Function
Number of int...
Question
Number of integral values of
x
satisfying
|
x
2
−
5
x
+
4
|
=
2
is
Open in App
Solution
|
x
2
−
5
x
+
4
|
=
2
If
x
2
−
5
x
+
4
<
0
i.e.,
x
∈
(
1
,
4
)
then
−
(
x
2
−
5
x
+
4
)
=
2
⇒
x
2
−
5
x
+
6
=
0
⇒
(
x
−
3
)
(
x
−
2
)
=
0
⇒
x
=
3
,
2
If
x
2
−
5
x
+
4
≥
0
i.e.,
x
∈
(
−
∞
,
1
]
∪
[
4
,
∞
)
then
x
2
−
5
x
+
4
=
2
⇒
x
2
−
5
x
+
2
=
0
⇒
x
=
5
±
√
25
−
4
×
2
2
⇒
x
=
5
±
√
17
2
Suggest Corrections
0
Similar questions
Q.
Number of integral values of
x
satisfying
|
x
2
−
5
x
+
4
|
=
2
is
Q.
The number of integral values of x satisfying
√
−
x
2
+
10
x
−
16
<
x
−
2
is
Q.
Number of integral values of x satisfying
(
3
4
)
6
x
+
10
−
x
2
<
(
27
64
)
is
___
.
Q.
The number of integral values of
x
,
satisfying the inequality
(
|
x
|
+
3
)
(
4
−
|
x
|
)
x
2
−
|
x
|
>
0
is
Q.
The number of integral values of x satisfying the equation
|
x
4
.3
|
x
−
2
|
.5
x
−
1
|
=
−
x
4
.3
|
x
−
2
|
.5
x
−
1
is
View More
Related Videos
Modulus
MATHEMATICS
Watch in App
Explore more
Absolute Value Function
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app