  Question

Number of roots of a quadratic equation  are:

A
1  B
2  C
3  D
None  Solution

The correct option is A $$2$$Let us, consider the quadratic equation of the general form   $$ax^{2}+bx+c=0$$  where, $$a≠0$$Now divide each term by $$a$$ (Since  $$a≠0$$), we get $$\Rightarrow$$ $$x^{2}$$ $$+$$ $$\dfrac{b}{a}x$$$$+$$$$\dfrac{c}{a}=0$$$$\Rightarrow$$ $$x^{2}$$$$+$$$$\dfrac{2b}{2a}x$$ $$+$$ $$\Bigg(\dfrac{b}{2a}\Bigg)^{2}$$$$-$$$$\Bigg(\dfrac{b}{2a}\Bigg)^{2}$$$$+$$$$\dfrac{c}{a}$$  = $$0$$ After this we get$$\Rightarrow$$ $$\Bigg(x + \dfrac{b}{2a}\Bigg)^{2}$$ – $$\Bigg(\dfrac{\sqrt{b^{2} - 4ac}}{2a}\Bigg)^{2}=0$$$$\Rightarrow$$ $$\Bigg[x + \Bigg(\dfrac{b}{2a}\Bigg) + \Bigg(\dfrac{\sqrt{b^{2} - 4ac}}{2a}\Bigg)\Bigg]\Bigg[x +\Bigg(\dfrac{b}{2a}\Bigg) - \Bigg(\dfrac{\sqrt{b^{2} - 4ac}}{2a}\Bigg)\Bigg]=0$$$$\Rightarrow$$ $$\Bigg[x - \Bigg(\Bigg(\dfrac{-b - \sqrt{b^{2} - 4ac}}{2a}\Bigg)\Bigg)\Bigg]\Bigg[x - \Bigg(\Bigg(\dfrac{-b +\sqrt{b^{2} - 4ac}}{2a}\Bigg)\Bigg)\Bigg] = 0$$$$\Rightarrow$$ $$(x - α)(x - β) = 0,$$where $$α = \Bigg(\dfrac{- b -\sqrt{b^{2} - 4ac}}{2a}\Bigg)$$ and $$β = \Bigg(\dfrac{- b + \sqrt{b^{2} - 4ac}}{2a}\Bigg)$$Now we can clearly see that the equation $$ax^{2} + bx + c = 0$$ reduces to$$(x - α)(x - β) = 0$$ and the equation $$ax^{2} + bx + c = 0$$ is only satisfiedby the values $$x = α$$ and $$x = β$$.Except $$α$$ and $$β$$ no other values of x satisfies the equation $$ax^{2} + bx +c = 0$$Hence, we can say that the equation $$ax^{2} + bx + c = 0$$ has $$only$$ $$two$$ roots.Therefore, number of roots of Quadratic Equation are $$2$$Hence Answer is $$(B)$$ Mathematics

Suggest Corrections  0  Similar questions
View More  People also searched for
View More 