wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Of the three independent events E1,E2 and E3, the probability that only E1 occurs is α , only E2 occurs is β and only E3 occurs is γ . Let the probability p that none of events E1,E2 or E3 occurs satisfy the equations (α2β)p=αβ and (β3γ)p=2βγ . All the given probabilities are assumed to lie in the interval (0,1). Then Probability of occurence of E1Probability of occurence of E3

Open in App
Solution

P(E1)P(¯¯¯¯E2)P(¯¯¯¯E3)=α ....(i)
P(¯¯¯¯E1)P(E2)P(¯¯¯¯E3)=β ....(ii)
P(¯¯¯¯E1)P(¯¯¯¯E2)P(E3)=γ ....(ii)
P(¯¯¯¯E1)P(¯¯¯¯E2)P(¯¯¯¯E3)=ρ ....(iv)
Divide (i) by (iv),
P(E1)P(E1)=αρ=ααβαβ=α2ββ

p(¯¯¯¯¯¯E1)P(E1)=βα2β

1P(E1)P(E1)=βα2β

1P(E1)1=βα2β

1P(E1)=αβα2β

P(E1)=α2βαβ ....(v)

Now, αβα2β=2βγβ3γ

αα2β=2γβ3γ

αβ3γα=2γα4βγ

αβ=5γα4βγ

γ=αβ5α4β ....(vi)

Divide (iii) by (iv)

P(E3)P(¯¯¯¯E3)=γρ=γαβα2β=γ(α2β)αβ

P(E3)P(¯¯¯¯E3)=α2β5α4β

P(E3)P(¯¯¯¯E3)=5α4βα2β

1P(E3)P(E3)=5α4βα2β

1P(E3)=6α6βα2β=6(αβ)α2β

P(E3)=α2β6(αβ)

P(E1)P(E3)=α2βαβα2β6(αβ)=6

flag
Suggest Corrections
thumbs-up
4
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon