The correct option is A √5 units, √5 units
Let C(x, y) be the centre of the circle.
Now, points P(4, 1), Q(6, 5) and R(2, 7) lie on the circle.
∴ CP = CQ = CR
Now, CP = CQ
⇒CP2=CQ2
⇒(4−x)2+(1−y)2=(6−x)2+(5−y)2
⇒16+x2−8x+1+y2−2y=36+x2−12x+25+y2−10y
⇒17−8x−2y=61−12x−10y
⇒4x+8y=44
⇒x+2y=11 ...(i)
Also, CP = CR
⇒CP2=CR2
⇒(4−x)2+(1−y)2=(2−x)2+(7−y)2
⇒16+x2−8x+1+y2−2y=4+x2−4x+49+y2−14y
⇒17−8x−2y=53−4x−14y
⇒4x−12y=−36
⇒x−3y=−9 ...(ii)
Solving (i) and (ii), we get x = 3, y = 4.
Therefore, the centre of the circle is C(3, 4).
It is known that the perpendicular drawn from the centre to the chord bisects the chord.
∴ Mid-point of PQ=(4+62,1+52)=(5,3)
Mid-point of QR =(6+22,5+72)=(4,6)
∴ Perpendicular distance from centre to chord PQ =√(5−3)2+(3−4)2=√4+1=√5 units
Perpendicular distance from centre to chord QR =√(4−3)2+(6−4)2=√1+4=√5 units
Hence, the correct answer is option (a).