sin(α−β)=sinαcosβ−cosαsinβ.
Let ^i is a vector along X-axis ^j is a unit vector along Y-axis and
∠XOP=α
∠XOQ=β
∴∠QOP=(α−β)
→OM=x1^i →MP=y1^j
In ΔOPM →OP=→OM+→MP
→OP=x1^i+y1^j
cosα=OMOP=x11
sinα=MPOP=y11
→OP=^icosα+^jsinα
Similarly →OQ=^icosβ+^jsinβ
→OQ×→OP=(^icosβ+^jsinβ)×(^icosα+^jsinα)
→OQ×→OP=sinαcosβ(^i×^j)+cosαsinβ(^j×^i)
→OQ×→OP=(sinαcosβ−cosαsinβ)^k .......(i)
→OQ×→OP=|OQ||OP|sin(α−β)^k
=∣∣
∣∣ijkcosβsinβocosαsinα0∣∣
∣∣
→OQ×→OP=sin(α−β)^k .......(ii)
∴ By equation (i) and (ii)
sin(α−β)=sinαcosβ−cosαsinβ.