wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove by vector method: sin(αβ)=sinαcosβcosαsinβ.

Open in App
Solution

sin(αβ)=sinαcosβcosαsinβ.
Let ^i is a vector along X-axis ^j is a unit vector along Y-axis and
XOP=α
XOQ=β
QOP=(αβ)
OM=x1^i MP=y1^j
In ΔOPM OP=OM+MP
OP=x1^i+y1^j
cosα=OMOP=x11
sinα=MPOP=y11
OP=^icosα+^jsinα
Similarly OQ=^icosβ+^jsinβ
OQ×OP=(^icosβ+^jsinβ)×(^icosα+^jsinα)
OQ×OP=sinαcosβ(^i×^j)+cosαsinβ(^j×^i)
OQ×OP=(sinαcosβcosαsinβ)^k .......(i)
OQ×OP=|OQ||OP|sin(αβ)^k
=∣ ∣ijkcosβsinβocosαsinα0∣ ∣
OQ×OP=sin(αβ)^k .......(ii)
By equation (i) and (ii)
sin(αβ)=sinαcosβcosαsinβ.

665513_628586_ans_91418bd81c0a493a9e001c85ab915df8.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon