Let OX and OY be two mutually perpendicular lines intersecting at O.
Let the unit vectors along OX and OY be ^i and ^j
Let OB be a line above axis OX making angle α with the axis OX.
∠AOB=α+β
Take a point P on OA such that OP=1, PM⊥OX
Take a point Q on OB such that OQ=1,QN⊥OX
→OQ=→ON+→NQ
=(ON)^i+(NQ)^j
=(OQcosα)^i+(OQsinα)^j
=(1cosα)^i+(1sinα)^j
=cosα^i+sinα^j .......(1)
→OP=→OM+→MP
=(OM)^i+(−→NP)(−^j)
=(OPcosβ)^i+(OPsinβ)(−^j)
=(1cosβ)^i+(1sinβ)(−^j)
=cosβ^i−sinβ^j ........(2)
→OP×→OQ=(cosβ^i−sinβ^j)×(cosα^i+sinα^j)
=cosβcosα(^i×^i)+cosβsinα(^i×^j)−sinβcosα(^j×^i)−sinβsinα(^j×^j)
=(sinαcosβ+cosαsinβ)^k
Again →OP×→OQ=1.1sin(α+β)^k
=sin(α+β)^k ........(3)
By equation (2) and (3) we get.
sin(α+β)=sinαcosβ+cosαsinβ.