1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
General Solution of Trigonometric Equation
Prove 1 + t...
Question
Prove
(
1
+
tan
2
θ
)
sin
2
θ
=
tan
2
θ
Open in App
Solution
L
H
S
=
(
1
+
tan
2
θ
)
sin
2
θ
=
(
1
+
sin
2
θ
cos
2
θ
)
sin
2
θ
=
(
cos
2
θ
+
sin
2
θ
cos
2
θ
)
sin
2
θ
As we know that
cos
2
θ
+
sin
2
θ
=
1
Therefore,
=
1
cos
2
θ
×
sin
2
θ
=
[
sin
θ
cos
θ
]
2
since
sin
θ
cos
θ
=
tan
θ
L
H
S
=
tan
2
θ
=
R
H
S
Hence proved.
Suggest Corrections
0
Similar questions
Q.
Solve
t
a
n
2
Θ
−
s
i
n
2
Θ
=
t
a
n
2
Θ
s
i
n
2
Θ
Q.
Show that
t
a
n
2
θ
−
s
i
n
2
θ
=
t
a
n
2
θ
s
i
n
2
θ
Q.
Consider the following:
1.
tan
2
θ
−
sin
2
θ
=
tan
2
θ
sin
2
θ
2.
(
1
+
cot
2
θ
)
(
1
−
cos
θ
)
(
1
+
cos
θ
)
=
1
Which of the statements given below is correct ?
Q.
Prove:
[
1
+
tan
2
θ
1
+
cot
2
θ
]
=
[
1
−
tan
θ
1
−
cot
θ
]
2
=
tan
2
θ
Q.
Prove the following trigonometric identities.
tan
2
θ − sin
2
θ = tan
2
θ sin
2
θ