1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Implicit Differentiation
Prove that: 1...
Question
Prove that:
1
-
cosθ
1
+
cosθ
=
(
cosecθ
-
cotθ
)
2
.
Open in App
Solution
RHS
=
cosecθ
-
cotθ
2
=
1
sinθ
-
cosθ
sinθ
2
=
1
-
cosθ
2
sin
2
θ
=
1
-
cosθ
2
1
-
cos
2
θ
=
1
-
cosθ
1
-
cosθ
1
-
cosθ
1
+
cosθ
=
1
-
cosθ
1
+
cosθ
LHS =
1
-
cosθ
1
+
cosθ
Hence, LHS = RHS
Suggest Corrections
0
Similar questions
Q.
(i)
1
-
sinθ
1
+
sinθ
=
(
secθ
-
tanθ
)
2
(ii)
1
+
cosθ
1
-
cosθ
=
(
cosecθ
+
cotθ
)
2
Q.
Prove each of the following identities:
i
1
+
sin
θ
1
-
sin
θ
=
sec
θ
+
tan
θ
ii
1
-
cos
θ
1
+
cos
θ
=
cosec
θ
-
cot
θ
iii
1
+
cos
θ
1
-
cos
θ
+
1
-
cos
θ
1
+
cos
θ
=
2
cosec
θ
Q.
Prove the following identities :
1
−
cos
θ
1
+
cos
θ
=
(
c
o
s
e
c
θ
−
cot
θ
)
2
Q.
Prove the following trigonometric identities.
1
-
cos
θ
1
+
cos
θ
=
cosec
θ
-
cot
θ