Prove that :
(1+tanθ+secθ)(1+cotθ−cosecθ) = 2
(1+tanθ+secθ)(1+cotθ−cosecθ)
= (1 + sin θcos θ + 1cos θ)(1 + cos θsin θ − 1sin θ)
= ((cos θ + sin θ + 1)cos θ)((cos θ + sin θ − 1)sin θ)
Since (a + b)(a −b) =(a2 − b2)
=(cosθ+sinθ)2−12(cosθsinθ)
=(cos2θ+sin2θ+2cosθsinθ−1)(cosθsinθ)
=(1+2cosθsinθ−1)(cosθsinθ)
=(2cosθsinθ)(cosθsinθ)
⇒2
Hence proved