Byju's Answer
Standard XII
Mathematics
Definition of a Determinant
Prove that ...
Question
Prove that
∣
∣ ∣
∣
b
+
c
c
+
a
a
+
b
c
+
a
a
+
b
b
+
c
a
+
b
b
+
c
c
+
a
∣
∣ ∣
∣
=
=
2
(
a
+
b
+
c
)
(
a
b
+
b
c
+
c
a
−
a
2
−
b
2
−
c
2
)
Open in App
Solution
△
=
∣
∣ ∣
∣
b
+
c
c
+
a
a
+
b
c
+
a
a
+
b
b
+
c
a
+
b
b
+
c
c
+
a
∣
∣ ∣
∣
⇒
R
1
=
R
1
+
R
2
+
R
3
⇒
△
=
∣
∣ ∣
∣
2
(
a
+
b
+
c
)
2
(
a
+
b
+
c
)
2
(
a
+
b
+
c
)
a
+
c
a
+
b
b
+
c
a
+
b
b
+
c
c
+
a
∣
∣ ∣
∣
=
2
(
a
+
b
+
c
)
∣
∣ ∣
∣
1
1
1
c
+
a
a
+
b
b
+
c
a
+
b
b
+
c
c
+
a
∣
∣ ∣
∣
⇒
C
2
=
C
2
−
C
1
;
C
3
=
C
3
−
C
1
⇒
△
=
2
(
a
+
b
+
c
)
∣
∣ ∣
∣
1
0
0
c
+
a
b
−
c
b
−
a
a
+
b
c
−
a
c
−
b
∣
∣ ∣
∣
expanding along
C
1
⇒
△
=
2
(
a
+
b
+
c
)
×
1
∣
∣
∣
b
−
c
b
−
a
c
−
a
c
−
b
∣
∣
∣
=
2
(
a
+
b
+
c
)
[
(
b
−
c
)
(
c
−
b
)
−
(
b
−
a
)
(
c
−
a
)
]
=
2
(
a
+
b
+
c
)
[
b
c
−
c
2
+
b
c
−
b
2
−
b
c
+
a
c
−
a
2
+
a
b
]
=
2
(
a
+
b
+
c
)
(
a
b
+
b
c
+
c
a
−
a
2
−
b
2
−
c
2
)
Hence, proved.
Suggest Corrections
0
Similar questions
Q.
Prove that
∣
∣ ∣
∣
b
+
c
c
+
a
a
+
b
c
+
a
a
+
b
b
+
c
a
+
b
b
+
c
c
+
a
∣
∣ ∣
∣
=
2
∣
∣ ∣
∣
a
b
c
b
c
a
c
a
b
∣
∣ ∣
∣
.
Q.
Show that
∣
∣ ∣
∣
b
+
c
c
+
a
a
+
b
c
+
a
a
+
b
b
+
c
a
+
b
b
+
c
c
+
a
∣
∣ ∣
∣
=
2
∣
∣ ∣
∣
a
b
c
b
c
a
c
a
b
∣
∣ ∣
∣
Q.
Prove the following identity:
a
(
b
−
c
)
2
(
c
−
a
)
(
a
−
b
)
+
b
(
c
−
a
)
2
(
a
−
b
)
(
b
−
c
)
+
c
(
a
−
b
)
2
(
b
−
c
)
(
c
−
a
)
=
a
+
b
+
c
.
Q.
∣
∣ ∣
∣
b
+
c
a
−
c
a
−
b
b
−
c
c
+
a
b
−
a
c
−
b
c
−
a
a
+
b
∣
∣ ∣
∣
=
Q.
Prove that
∣
∣ ∣ ∣
∣
b
c
−
a
2
c
a
−
b
2
a
b
−
c
2
−
b
c
+
c
a
+
a
b
b
c
−
c
a
+
a
b
b
c
+
c
a
−
a
b
(
a
+
b
)
(
a
+
c
)
(
b
+
c
)
(
b
+
a
)
(
c
+
a
)
(
c
+
b
)
∣
∣ ∣ ∣
∣
=
3.
(
b
−
c
)
(
c
−
a
)
(
a
−
b
)
(
a
+
b
+
c
)
(
a
b
+
b
c
+
c
a
)
View More
Related Videos
Introduction
MATHEMATICS
Watch in App
Explore more
Definition of a Determinant
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app