Byju's Answer
Standard XI
Mathematics
Basic Trigonometric Identities
Prove that : ...
Question
Prove that :
s
i
n
A
+
c
o
s
A
s
i
n
A
−
c
o
s
A
+
s
i
n
A
−
c
o
s
A
s
i
n
A
+
c
o
s
A
=
2
s
i
n
2
A
−
c
o
s
2
A
=
2
2
s
i
n
2
A
−
1
=
2
1
−
2
c
o
s
2
A
Open in App
Solution
L.H.S. =
s
i
n
A
+
c
o
s
A
s
i
n
A
−
c
o
s
A
+
s
i
n
A
−
c
o
s
A
s
i
n
A
+
c
o
s
A
⇒
L.H.S. =
(
s
i
n
A
+
c
o
s
A
)
2
+
(
s
i
n
A
−
c
o
s
A
)
2
(
s
i
n
A
−
c
o
s
A
)
(
s
i
n
A
+
c
o
s
A
)
⇒
L.H.S. =
(
s
i
n
2
A
+
c
o
s
2
A
+
2
s
i
n
A
c
o
s
A
)
+
(
s
i
n
2
A
+
c
o
s
2
A
−
2
s
i
n
A
c
o
s
A
)
s
i
n
2
A
−
c
o
s
2
A
⇒
L.H.S. =
(
1
+
2
s
i
n
A
c
o
s
A
)
+
(
1
−
2
s
i
n
A
c
o
s
A
)
s
i
n
2
A
−
c
o
s
2
A
⇒
L.H.S. =
2
s
i
n
2
A
−
c
o
s
2
A
=
2
s
i
n
2
A
−
(
1
−
s
i
n
2
A
)
⇒
L.H.S. =
2
2
s
i
n
2
A
−
1
=
2
2
(
1
−
c
o
s
2
A
)
−
1
=
2
1
−
2
c
o
s
2
A
=
R
.
H
.
S
.
Suggest Corrections
0
Similar questions
Q.
Prove the following identity.
s
i
n
A
+
c
o
s
A
s
i
n
A
−
c
o
s
A
+
s
i
n
A
−
c
o
s
A
s
i
n
A
+
c
o
s
A
=
2
2
s
i
n
2
A
−
1
.
Q.
Prove the identity:
s
i
n
A
+
c
o
s
A
s
i
n
A
−
c
o
s
A
+
s
i
n
A
−
c
o
s
A
s
i
n
A
+
c
o
s
A
=
2
1
−
2
c
o
s
2
A
Q.
Prove that
sin
A
+
1
−
cos
A
sin
A
−
1
+
cos
A
=
1
+
sin
A
cos
A
Q.
Prove that :
1
+
cos
A
+
sin
A
1
+
cos
A
−
sin
A
=
1
+
sinA
cos
A
Q.
Prove that
1
+
sin
A
−
cos
A
c
o
s
A
+
sin
A
−
1
=
tan
A
2
.
View More
Related Videos
Pythagorean Identities
MATHEMATICS
Watch in App
Explore more
Basic Trigonometric Identities
Standard XI Mathematics
Solve
Textbooks
Question Papers
Install app