CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
Question

Prove that :
sinA+cosAsinAcosA+sinAcosAsinA+cosA=2sin2Acos2A=22sin2A1=212cos2A

Open in App
Solution

L.H.S. = sinA+cosAsinAcosA+sinAcosAsinA+cosA

L.H.S. = (sinA+cosA)2+(sinAcosA)2(sinAcosA)(sinA+cosA)

L.H.S. = (sin2A+cos2A+2sinAcosA)+(sin2A+cos2A2sinAcosA)sin2Acos2A

L.H.S. = (1+2sinAcosA)+(12sinAcosA)sin2Acos2A

L.H.S. = 2sin2Acos2A=2sin2A(1sin2A)

L.H.S. = 22sin2A1=22(1cos2A)1=212cos2A=R.H.S.

flag
Suggest Corrections
thumbs-up
0
mid-banner-image
mid-banner-image
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App